Estimation of aboveground carbon stock in service area of Ubon Ratchathani Zoo, Ubon Ratchathani province, Northeastern Thailand

Muangsong, C.¹, Phewphan, U.^{1*}, Kongsombat, P.¹, Meengoen, N.¹, Thongdeephan, T.², Chanhom, D.², Naipreedee, K.², Khambai, N.², Pontham, J.² and Pumijumnong, N.³

¹Innovation for Social and Environmental Management, Mahidol University, Amnatcharoen campus, Amnatcharoen, Thailand; ²Ubon Ratchathani Zoo, The Zoological Park Organization of Thailand under the Royal Patronage H.M the King, Ubon Ratchathani, Thailand; ³ Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand.

Muangsong, C., Phewphan, U., Kongsombat, P., Meengoen, N., Thongdeephan, T., Chanhom, D., Naipreedee, K., Khambai, N., Pontham, J. and Pumijumnong, N. (2024). Estimation of aboveground carbon stock in service area of Ubon Ratchathani Zoo, Ubon Ratchathani province, Northeastern Thailand. International Journal of Agricultural Technology 20(1):197-212.

Abstract Results found a total of 200 trees of 22 species which belongs to from 16 families. The most common family was Dipterocarpaceae with 129 trees, including *Shorea roxburghii* G. Don (40% of total trees), *Dipterocarpus alatus* Roxb. (17% of total trees), and *Dipterocarpus intricatus* Dyer (7% of total trees). The total aboveground biomass and total carbon storage for all trees were 52,337.3 kg (200.1 kg rai⁻¹) and 24,598.5 kg (.246 ton), respectively. A total of carbon dioxide absorption for the study site was 85.4 t-CO₂ or 60.6 t-CO₂ ha⁻¹ (9.7 t-CO₂ rai⁻¹). It is provided an important data for climate mitigation policy i.e., carbon credit policy and carbon credit trading in the future. This study is firstly estimated of carbon storage by trees growing in the service area of National Zoo in Northeastern Thailand.

Keywords: Climate change, Biomass, Carbon storage, Ubon Ratchathani Zoo, Carbon credit

Introduction

Among any other factors related to climate change such as the fastgrowing industries and agricultural areas, greenhouse effect is the main driver of climate change worldwide (Kabir *et al.*, 2023). The increasing concentrations of carbon dioxide (CO₂) and other greenhouse gases (GHG) in the Earth's atmosphere is the largest contributor to global warming todate (Letcher, 2020; Kabir *et al.*, 2023). The atmospheric CO₂ can be absorbed by trees and other plants through photosynthesis and consequently accumulated in living and dead organisms (i.e., plants), especially in the form of woody biomass (Paul *et al.*,

^{*} Corresponding Author: Phewphan, U.; Email: uthaiwan.phe@mahidol.edu

2022). Both natural and plantation forests typically serve as a significant carbon sink. Therefore, deforestation releases the stored CO_2 back into the atmosphere which leads to the greenhouse effect and global warming. Regarding to the international agreement, known as the Kyoto Protocol (KP), which was initiated in 1997 as a part of the United Nations Framework Convention on Climate Change (UNFCCC), the main gold of the KP was to reduce the GHG emissions from the industrial sector (i.e. industrialized countries or deleloped nations) by 5.2% compared to the base year in 1990 (United Nations, 1998; Sotoodeh, 2021). The KP estrablished the carbon markets as the economic mechanisms to reduce or limit GHG emissions, including mandatory or compliance carbon market (CCM) and voluntary carbon market (VCM) (United Nations, 1998). In 2015, the signed of the Paris Agreement (PA) (known as COP 21) provide a roadmap for nations to reach carbon neutrality (or climate neutrality) by 2050 and allow carbon credit trading between developed and developing countries (UNFCCC, 2015). A carbon credit is referred to by a variety of terms such as carbon offsets, carbon allowances, or carbon counterbalancing, which is considered as a powerful tool in controlling the GHG emissions and reductions through the socalled carbon trading systems or carbon pricing machanisms (Alam and Jain, 2020), and is also regarded as one of the most effective tools for climate change mitigation (IPCC, 2023; Vilkov and Tian, 2023).

Thailand locates in the center of mainland Southeast Asia. Carbon credit trading in Thailand is under the domestic VCM. Thailand Voluntary Emission Reduction Program (T-VER) and Thailand Voluntary Emission Trading Scheme (Thailand V-ETS) have been launched and implemented since 2009 by the Thailand Greenhouse Gas Management Organization (TGO) (TGO, 2021). Both public and private sectors in Thailand are thus required to participate in the VCM in order to meet the PA targets in the future. The zoo industry is considered as one of important sectors for Thailand economic. Zoos provide not only entertainment but also education, conservation and research (Carr and Cohen, 2015). Thailand's zoos generate income of over 1 billion Thai bahts (THB) in the past few years (The Zoological Park Organization of Thailand, 2022). Ubon Ratchathani Zoo is one of the biggest zoo in Thailand. The zoo locates in the capital city of Ubon Ratchathani province, which is known as one of the biggest provinces in Northeastern Thailand and plays pivotal role in conserving of local ecosystems and biodiversity of the natural areas in the city that having rapid expansion of infrastructure. The zoo is situated in the area of Dong Fa Huan national reserved forest and comprises of a wide variety of tree species with various shapes and sizes. Because the carbon is mainly stored in trees and soils in forests, measuring forest ecosystem carbon storage or carbon sequestration rates are fundamental basis for estimating the the absorption of CO₂ by plants

and essential for reducing carbon emission (Salas Macías *et al.*, 2017). Previouse studies have shown plant biomass carbon storage in several areas in Thailand such as the Ban Mae Chiang Rai Lum Community Forest Management in Northern Thailand (Thammanu *et al.*, 2021) and the Sakaerat Environmental Research Station in Northeastern Thailand (Pungpa *et al.*, 2023). However, none of these studies focused on estimating carbon storage in Thailand's zoos, especially the zoo in northeastern Thailand. The objective was to assess aboveground biomass and carbon storage of trees growing in service area of Ubon Ratchathani Zoo.

Materials and methods

Study site

The study site situated in Ubon Ratchathani Zoo which locates within Dong Fa Huan national reserved forest (15°17'10" N, 104° 48'25" E) of Ubon Ratchathani province in Northeastern Thailand, with an area of 194.72 ha (1,217 rai) in total (Figure 1.). The zoo area is divided into three parts, including service area or service zone, animal display and exhibition zone, and natural forest zone for nature trails ranging from 318 to 1,464 m. The zoo serves as essential natural areas in the big city and provide not only recreation but also environmental services to society. According to the changes in land use and infrastructure development in the zoo, the service zone is primarily selected in this study as it might be mostly linked to infrastructure planning in the near future compared to other zone (i.e., natural forest zone or protected forest area). A total of 1.90 ha (11.89 rai) of the service area within the zoo was studied.

Data collection

In-the-field data collection was conducted between January and May 2023. All species of trees in the service area (Figure 2.) were recorded and indentified to their species. Individual tree characteristics such as diameter at breast height (DBH), tree height (H), and tree position were collected using diameter tape, laser rangefinder/hypsometer (Nikon Forestry Pro II), and Global Positioning System (GPS), repectively. The distribution of trees at the site was created using the Geographic Information System (GIS) software.

Data analysis

Tree species density i.e. the number of trees per unit area, was calculated using the formula as follow:

Density (D) =
$$\frac{\text{Total number of such plant species}}{\text{Total sample plot area unit of the study}}$$

The estimation of aboveground biomass (AGB) was calculated using the allometric equation in Table 1.

Figure 1. The study area in Ubon Ratchathani province (a) and the study site at Ubon Ratchathani Zoo showing the boundary of service area (or service zone) and other zones (b)

Forest types	Tree species	Equations and parameters	References
Dry evergreen forest and		$W_{\rm S} = 0.0509 \ (D^2 {\rm H})^{0.919}$	Tsutsumi et al. (1983)
Montane evergreen forest		$W_{\rm B} = 0.00893 \ ({\rm D}^2{\rm H})^{0.977}$	
	0	$W_L = 0.0140 (\dot{D}^2 H)^{0.669}$	
		$W_T = W_S + W_B + W_L$	
Tropical ever	green rain forest or	$W_{\rm S} = 0.0396 \ (D^2 \rm H)^{0.9326}$	Ogawa et al. (1965)
tropical rain forest		$W_{\rm B} = 0.006003 \ ({\rm D}^2{\rm H})^{1.027}$	
-		$W_L = (28/(W_S + W_B + 0.025))^{-1}$	
		$W_T = W_S + W_B + W_L$	
Deciduous di	pterocarp forest and	$W_{\rm S} = 0.0396 ({\rm D}^2 {\rm H})^{0.933}$	Ogawa et al. (1965)
mixed decidu	ious forest	$W_{\rm B} = 0.00349 \ (D^2 {\rm H})^{1.030}$	
		$W_{L} = (28/(W_{S}+W_{B}+0.025))^{-1}$	
		$W_T = W_S + W_B + W_L$	
Remarks:W _S	=Stem biomass (kg.),V	V _B =Branch biomass of bran	the s(kg.), W_L =Leaf
	biomass		
kg.),W _T	=Total biomass (kg.),I	D =Diameter at breath heig	ht (m.) and H =Tree height (1

Table 1. The allometric equations for the estimation of aboveground biomass used in this study

Figure 2. Trees growing within the service area in Ubon Ratchathani Zoo

Results

Results showed that the girth and DBH of all trees within service zone were averaged 82.8 cm and 26.4 cm, respectively (Table 2.). The total aboveground biomass for all trees was 52,337.3 kg (200.1 kg rai⁻¹). Total carbon storage for all trees in the service zone were 52,337.3 kg (200.1 kg rai⁻¹) and 24,598.5 kg

(24.6 ton). A total of carbon dioxide absorption for the study site was 85.4 t-CO_2 or $60.6 \text{ t-CO}_2 \text{ ha}^{-1}$ (9.7 t-CO₂ rai⁻¹).

Table 2. Plant community characteristics and carbon stored in trees growing within the service area of Ubon Ratchathani Zoo

Parameters	Summary of results
Total area	1.90 ha or 11.89rai
Number of trees	200 trees
Number of families	16 families
Number of species	22species
Average girth	82.8 cm
Average DBH	26.4 cm
Average H	9.7 m
Tree density	6.7 stem rai ⁻¹
	42 1.stem ha ⁻¹
Sum of stem biomass (Ws)	40,838.6 kg
Sum of branch biomass (W _B)	10,236.9 kg
Sum of leaf biomass (WL)	1,261.8 kg
Total aboveground biomass	52,338.3 kg or 200.1 kg rai ⁻¹
Total carbon	24,598.5 kg
	0.246 t
Average total carbon per tree	122.0 kg
	0.12 t
CO ₂ absorption	85.4 t-CO ₂
	9.7 t-CO ₂ rai ⁻¹ or 60.6 t-CO ₂ ha ⁻¹

Species composition, characteristics, and density of trees

The distribution of trees within the service zone was shown in Figure 1(b). It is indicated a total of 200 trees of 22 species from 16 families (Table 3). The most common family was Dipterocarpaceae with 129 trees, including *Shorea roxburghii* G. Don (40% of total trees), *Dipterocarpus alatus* Roxb. (17% of total trees), and *Dipterocarpus intricatus* Dyer (7% of total trees).

The trees with the greatest and smallest girth belonged to *Ficus benjamina* L. (260.0 cm) and *Millettia brandisiana* Kurz (16.5 cm), respectively. The average height of all trees in the service zone was 9.7 m. *Dipterocarpus intricatus* Dyer was the highest tree in the service zone with approximately 16.5 m height.

Tree density of the studied area was 42.1 stem ha⁻¹ or 6.7 stem rai⁻¹ (Table 4). It is noted that the service area generally covers with building and other infrastructure. The top five dominant tree species in the service area were *Shorea roxburghii* G. Don (42.1 stem ha⁻¹), *Dipterocarpus alatus* Roxb. (18.4 stem ha⁻¹)

¹), *Parinari anamensis* (9.5 stem ha⁻¹), *Dipterocarpus intricatus* Dyer (7.4 stem ha⁻¹), and *Pterocarpus macrocarpus* Kurz and *Carallia brachiate* (Lour.) Merr. (5.8 stem ha⁻¹), respectively.

No. of families	Families	No. of species	Sciencetific name	Abundance (stems)	Percentage (%)
1	Dipterocarpaceae	1	Shorea roxburghii G. Don	80	40.0
		2	Dipterocarpus intricatus Dyer	14	7.0
		3	Dipterocarpus alatus Roxb.	35	17.5
2	Chrysobalanaceae	4	Parinari anamensis	18	9.0
3	Rhizoophoraceae	5	<i>Carallia brachiate</i> (Lour.) Merr.	11	5.5
4	Leguminosae	6	<i>Pterocarpus macrocarpus</i> Kurz	11	5.5
5	Burseraceae	7	<i>Canarium subulatum</i> Guillaumin	6	3.0
6	Fabaceae	8	Millettia brandisiana Kurz	1	0.5
		9	Peltophorum dasyrhachis	3	1.5
		10	<i>Butea monosperma</i> (Lam.) Taub.	1	0.5
7	Annonaceae	11	<i>Melodorum fruticosum</i> Lour	3	1.5
		12	Xylopia vielana	1	0.5
8	Connaraceae	13	Ellipanthus tomentosus Kurz var. tomentosus	4	2.0
9	Myrtaceae	14	Syzygium cumini	3	1.5
10	Moraceae	15	Artocarpus lacucha	1	0.5
		16	Ficus benjamina L.	1	0.5
11	Anacardiaceae	17	Mangifera pentandra	2	1.0
12	Ochnaceae	18	<i>Ochna integerrima</i> (Lour.) Merr.	1	0.5
13	Tiliaceae	19	<i>Microcos tomentosa</i> Smith.	1	0.5
14	Myristcaceae	20	<i>Knema globularia</i> (Lam.) Warb.	1	0.5
15	Leguminosae - Papilionoideae.	21	<i>Dalbergia cultrata</i> Graham ex Benth.	1	0.5
16	Irvingiaceae	22	Irvingia malayana	1	0.5
		Total		200	100

Table 3. Summary of species composition in this study

No.	Sciencetific name	Density	Density
		(stem/rai)	(stem/ha)
1	Dipterocarpus alatus Roxb.	2.9	18.4
2	Peltophorum dasyrhachis	0.3	1.6
3	Melodorum fruticosum Lour	0.3	1.6
4	Irvingia malayana	0.1	0.5
5	Ficus benjamina L.	0.1	0.5
6	Xylopia vielana	0.1	0.5
7	Knema globularia (Lam.) Warb.	0.1	0.5
8	Syzygium cumini	0.3	1.6
9	Shorea roxburghii G. Don	6.7	42.1
10	Dipterocarpus intricatus Dyer	1.2	7.4
11	Carallia brachiate (Lour.) Merr.	0.9	5.8
12	Ochna integerrima (Lour.) Merr.	0.1	0.5
13	Microcos tomentosa Smith.	0.1	0.5
14	Canarium subulatum Guillaumin	0.5	3.2
15	Ellipanthus tomentosus Kurz var.	0.3	2.1
	tomentosus		
16	Pterocarpus macrocarpus Kurz	0.9	5.8
17	Parinari anamensis	1.5	9.5
18	Butea monosperma (Lam.) Taub.	0.1	0.5
19	Dalbergia cultrata Graham ex Benth.	0.1	0.5
20	Artocarpus lacucha	0.1	0.5
21	Mangifera pentandra	0.2	1.1
22	Millettia brandisiana Kurz	0.1	0.5
	Average	0.8	4.8

Table 4. The tree density in the service zone of Ubon Ratchathani Zoo

The aboveground biomass and total carbon storage

Five top species with the highest value of aboveground biomass are found to be *Shorea roxburghii* G. Don (15,964.7 kg), *Dipterocarpus alatus* Roxb. (14,580.5 kg) *Parinari anamensis* (4,752.3 kg) *Pterocarpus macrocarpus* Kurz (4,582.1 kg), and *Dipterocarpus intricatus* Dyer (4,068.5 kg) (Table 5. and Figure 3.).

No.	Sciencetific	Sum of	Sum of	Sum of	Total	Total
	name	stem	branch	leaf	aboveground	aboveground
		biomass	biomass	biomass	biomass (kg)	biomass (kg rai ⁻
	D :	(kg)	(kg)	(kg)	1.1.500.5	1) 1.00(0
1	Dipterocarpus	10,919.6	3,399.0	261.9	14,580.5	1,226.3
2	Paltonhorum	745.8	225 4	10.0	991.0	83.3
2	dasvrhachis	/45.0	223.4	19.9	<i>99</i> 1.0	85.5
3	Melodorum	109.2	29.2	4.9	143.3	12.1
-	fruticosum Lour					
4	Irvingia malayana	99.5	28.2	3.5	131.2	11.0
5	Ficus benjamina L.	1,033.7	339.1	19.1	1,392.0	117.1
6	Xylopia vielana	74.7	20.8	2.8	98.3	8.3
7	Knema	154.3	55.2	6.3	215.8	18.2
	globularia (Lam.)					
8	ward. Syzygium cumini	512.6	186.6	20.4	719.6	60.5
9	Syzygium cumini Shorea roxhur9hii	12 777 9	2 727 1	20.4 459 7	15 964 7	1 342 7
,	G. Don	12,777.9	2,727.1	-59.7	15,704.7	1,542.7
10	Dipterocarpus	3,225.3	751.2	92.0	4,068.5	342.2
	intricatus Dyer					
11	Carallia brachiate	972.7	193.4	38.7	1,204.7	101.3
12	(Lour.) Merr.	(0, 2)	11.4	2.5	741	(\mathbf{a})
12	Ocnna	60.2	11.4	2.5	/4.1	6.2
	(Lour) Merr					
13	Microcos	14.2	23	0.6	171	14
15	tomentosa Smith	17.2	2.5	0.0	17.1	1.4
14	Canarium	995.0	217.0	34.1	1.246.1	104.8
	subulatum			-	, -	
	Guillaumin					
15	Ellipanthus	399.1	84.1	14.5	497.6	41.9
	tomentosus Kurz					
	var. tomentosus					
16	Pterocarpus	3,636.4	834.8	110.9	4,582.1	385.4
17	<i>macrocarpus</i> Kurz	2 701 0	921 5	120.8	1 752 2	200.7
17	r urmuri anamensis	3,791.0	651.5	129.8	4,752.5	399.1
18	Rutea	83.1	16.2	34	102.7	86
10	monosperma	0011	10.2	5.1	102.7	0.0
	(Lam.) Taub.					
19	Dalbergia	290.8	64.7	9.8	365.2	30.7
	cultrata Graham					
	ex Benth.					
20	Artocarpus	112.6	22.7	4.4	139.7	11.7
	lacucha					
21	Mangifera	827.5	196.7	22.4	1,046.6	88.0
	pentandra	2.6	0.5	0.0	1.2	0.4
22	Millettia	3.6	0.5	0.2	4.3	0.4
	oranaisiana Kurz	10 020 1	10 226 0	1 761 0	57 227 2	200.1
	10181	40,030.0	10,230.9	1,201.0	34,337.3	200.1

Table 5. Estimating the aboveground biomass of all species in the service area of Ubon Ratchathani Zoo

Figure 3. Five top species with the highest value of total carbon storage

Five top species with the highest value of total carbon are shown to be *Ficus benjamina* L. (654.2 kg rai⁻¹ or 0.654 ton rai⁻¹), *Mangifera pentandra* (245.9 kg rai⁻¹ or 0.246 ton rai⁻¹), *Dipterocarpus alatus* Roxb. and *Pterocarpus macrocarpus* Kurz (159.8 kg rai⁻¹ or 0.196 ton rai⁻¹), *Dalbergia cultrata* Graham ex Benth. (171.7 kg rai⁻¹ or 0.172 ton rai⁻¹), and *Peltophorum dasyrhachis* (155.3 kg rai⁻¹ or 0.155 ton rai⁻¹) (Table 6).

No.	Sciencetific	Total carbon		Average of total carbon	
	name	(kg)	(ton)	(kg/stem)	(ton/stem)
1	Dipterocarpus alatus Roxb.	6,852.9	6.853	195.8	0.196
2	Peltophorum dasyrhachis	465.8	0.466	155.3	0.155
3	Melodorum fruticosum Lour	67.3	0.067	22.4	0.022
4	Irvingia malayana	61.7	0.062	61.7	0.062

Table 6. Estimating the carbon storage by all plant species in the service area of Ubon Ratchathani Zoo

No.	Sciencetific	Total carbon		Average of total carbon		
	name	(kg)	(ton)	(kg/stem)	(ton/stem)	
5	Ficus benjamina	654.2	0.654	654.2	0.654	
	L.					
6	Xylopia vielana	46.2	0.046	46.2	0.046	
7	Knema	101.4	0.101	101.4	0.101	
	globularia (Lam.)					
	Warb.					
8	Syzygium cumini	338.2	0.338	112.7	0.113	
9	Shorea	7,503.4	7.503	93.8	0.094	
	roxburghii G.					
	Don					
10	Dipterocarpus	1,912.2	1.912	136.6	0.137	
	intricatus Dyer					
11	Carallia	566.2	0.566	51.5	0.051	
	brachiate (Lour.)					
	Merr.					
12	Ochna	34.8	0.035	34.8	0.035	
	integerrima					
	(Lour.) Merr.					
13	Microcos	8.0	0.008	8.0	0.008	
	tomentosa Smith.					
14	Canarium	585.7	0.586	97.6	0.098	
	subulatum					
	Guillaumin					
15	Ellipanthus	233.9	0.234	58.5	0.058	
	tomentosus Kurz					
	var. tomentosus					
16	Pterocarpus	2,153.6	2.154	195.8	0.196	
	macrocarpus					
	Kurz					
17	Parinari	2,233.6	2.234	124.1	0.124	
	anamensis					
18	Butea	48.3	0.048	48.3	0.048	
	monosperma					
	(Lam.) Taub.					
19	Dalbergia	171.7	0.172	171.7	0.172	
	<i>cultrata</i> Graham					
	ex Benth.					
20	Artocarpus	65.7	0.066	65.7	0.066	
	lacucha					
21	Mangifera	491.9	0.492	245.9	0.246	
	pentandra	•	0.005	•		
22	Millettia	2.0	0.002	2.0	0.002	
	<i>brandisiana</i> Kurz					
	Sum or average	24.598.5	24.599	0.122	200.1	

Table 6. (Con.)

The total amount of carbon dioxide absorption per unit area varied from 0.022 t-CO₂ ha-1 (*Millettia brandisiana* Kurz) to 14.462 t-CO₂ ha-1 (*Shorea roxburghii* G. Don) as shown in Table 7. Five top species with the highest amount of carbon dioxide absorption are shown to be *Shorea roxburghii* G. Don (2.314 t-CO₂ rai-¹ or 14.462 t-CO₂ha⁻¹), *Dipterocarpus alatus* Roxb. (2.113 t-CO₂ rai-¹ or 13.208 t-CO₂ ha⁻¹), *Ficus benjamina* L. (1.127 t-CO₂ rai-¹ or 7.047 t-CO 2ha⁻¹), *Mangifera pentandra* (0.848 t-CO₂ rai-¹ or 5.298 t-CO 2ha⁻¹), and *Parinari anamensis* (0.689 t-CO₂ rai-¹ or 4.305 t-CO₂ha⁻¹) (Figure 4.).

Figure 4. Five top species with the highest amount of carbon dioxide absorption

No.	Sciencetific name	Total amount of carbon dioxide absorption	Total amount o absorption per	f carbon dioxide unit area
		t-CO ₂	t-CO2 rai ¹⁻	t-CO2 ha ¹⁻
1	Dipterocarpus alatus Roxb.	25.127	2.113	13.208
2	Peltophorum dasyrhachis	1.708	0.144	0.898
3	Melodorum fruticosum Lour	0.247	0.021	0.130

Table 7. Estimating the amount of carbon dioxide absorption by all plant species in the service area of Ubon Ratchathani Zoo

No. Sciencetific name		Total amount of carbon dioxide	Total amount of ca absorption per un	arbon dioxide it area
		absorption t-CO ₂	t-CO ₂ rai ¹⁻	t-CO ₂ ha ¹⁻
4	Irvingia malayana	0.029	0.106	0.664
5	Ficus benjamina L.	0.307	1.127	7.047
6	Xylopia vielana	0.022	0.080	0.497
7	<i>Knema</i> globularia (Lam.) Warb.	0.372	0.031	0.196
8	Syzygium cumini	1.240	0.104	0.652
9	<i>Shorea roxburghii</i> G. Don	27.512	2.314	14.462
10	Dipterocarpus intricatus Dyer	7.011	0.590	3.686
11	<i>Carallia brachiate</i> (Lour.) Merr.	2.076	0.175	1.091
12	Ochna integerrima (Lour.) Merr.	0.128	0.011	0.067
13	Microcos tomentosa Smith.	0.029	0.002	0.015
14	<i>Canarium subulatum</i> Guillaumin	2.147	0.181	1.129
15	<i>Ellipanthus</i> <i>tomentosus Kurz</i> var. tomentosus	0.858	0.072	0.451
16	Pterocarpus macrocarpus Kurz	7.896	0.664	4.151
17	Parinari anamensis	8.190	0.689	4.305
18	<i>Butea monosperma</i> (Lam.) Taub.	0.177	0.015	0.093
19	<i>Dalbergia</i> <i>cultrata</i> Graham ex Benth.	0.081	0.296	1.849
20	Artocarpus lacucha	0.031	0.113	0.707
21	Mangifera pentandra	0.231	0.848	5.298
22	Millettia brandisiana Kurz	0.001	0.003	0.022
	Sum or average	85.421	9.699	60.617

Discussion

The estimation of aboveground carbon stock is the most critical step for tracking changes in the the quantity of carbon stored in different land use and land cover types as well as providing the information which can be further used to buy and sell carbon credits. Previous works have shown the potential of natural forest areas for carbon credit trading, including the Ban Mae Chiang Rai Lum Community Forest Management in Northern Thailand (Thammanu et al., 2021) and the Sakaerat Environmental Research Station in Northeastern Thailand (Pungpa *et al.*, 2023). In addition, many studies have shown that the green areas (i.e., service areas) in cities or urbanized areas also serve as important places for carbon storages and carbon sinks, for examples in Thailand (Suthampaeng and Boonyanuphap, 2020) and other countries (Zhao et al., 2023). Because different land cover classes and area sizes, the amount of CO_2 absorbtion in our study cannot be copared to other previous studies due to their studied scales. The area of Ubon Ratchathani Zoo is not only the palce for recreation and eduation but also provide valuable ecosystem services in relation to carbon sequestration and storage. Our results provided an important data for climate mitigation policy (i.e., carbon credit policy) and carbon credit trading of Ubon Ratchathani Zoo and other similar areas in the future.

Acknowledgements

This publication is based upon research and academic works under the Memorandum of Understanding (MOU) between Mahidol University, Amnatchharoen campus and Ubon Ratchathani Zoo, the Zoological Park Organization of Thailand under the Royal Patronage H.M the King, Thailand.

References

- Alam, M. A. and Jain, S. (2020). Chapter 6 Blockchain Implementation Using Smart Grid-Based Smart City. In: Krishnan S, Balas VE, Julie EG, Robinson RH, Balaji S, and Kumar R eds., Handbook of Research on Blockchain Technology, Academic Press, pp.133-169.
- Carr, N. and Cohen, S. (2011). The Public Face of Zoos: Images of Entertainment, Education and Conservation. Anthrozoös, 24:175-189.
- Intergovernmental Panel on Climate Change (IPCC) (2023). Climate Change 2022 Mitigation of Climate Change. In: Intergovernmental Panel on Climate Change ed., Working Group III Contribution to the Sixth Assessment Report, Cambridge, Cambridge University Press, pp.1-2030.

- Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Rios-Escalante, P. R. D. and Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University -- Science, 35:1-7.
- Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998). Review of European Community & International Environmental Law, 7:214-217.
- Letcher, T. M. (2020). 1 Introduction With a Focus on Atmospheric Carbon Dioxide and Climate Change. In: Letcher TM ed., Future Energy (Third Edition), Elsevier, pp.3-17.
- Ogawa, H., Yoda, K., Kira, T. and Ogino, K. (1965). Comparative ecological studies on three main types of forest vegetation in Thailand. II. Plant biomass. Nature and Life in Southeast Asia, 4:49-80.
- Paul, K. I., England, J. R. and Roxburgh, S. H. (2022). Carbon dynamics in tree plantings: How changes in woody biomass impact litter and soil carbon. Forest Ecology and Management, 521:1-17.
- Pungpa, S., Chumkiew, S. and Piyatadsananon, P. (2023). Estimation of Aboveground Biomass and Carbon Stock Using Remote Sensing Data in Sakaerat Environmental Research Station, Thailand. In: Boonpook, W., Lin, Z., Meksangsouy, P., Wetchayont, P. eds. Applied Geography and Geoinformatics for Sustainable Development. Springer Geography. Springer, Cham.
- Salas Macías, C. A., Alegre Orihuela, J. C. and Iglesias Abad, S. (2017). Estimation of aboveground live biomass and carbon stocks in different plant formations and in the soil of dry forests of the Ecuadorian coast. Food and Energy Security, 6:1-7.
- Sotoodeh, K. (2021). 2 Fugiive emissions from piping and valves. In: Sotoodeh K ed., Prevention of Valve Fugitive Emissions in the Oil and Gas Industry, Gulf Professional Publishing, pp.37-65.
- Suthampaeng, T. and Boonyanuphap, J. (2020). Assessment of carbon stock in green area of Naresuan University and carbon-credit trading guidelines. Agricultural Science Journal, 51:80-85.
- Thailand Greenhouse Gas Management Organization (TGO) (2021). Greenhouse Gas Emissions

 Trading
 System
 Pilot
 Project.
 Retrieved
 from

 http://carbonmarket.tgo.or.th/index.php?lang=EN&mod=Y29uY2VwdF92ZXRz
- Thammanu, S., Han, H., Marod, D., Srichaichana, J. and Chung, J. (2021). Above-ground carbon stock and REDD+ opportunities of community-managed forests in northern Thailand. PLOS ONE, 16:207-215.
- The Zoological Park Organization of Thailand (2022). Financial reportt .. Retrieved from https://www.zoothailand.org/download/article/article_20230429173707.pdf
- Tsutsumi, T., Yoda. K., Sahunalu, P., Dhanmanonda, P. and Prachaiyo, B. (1983). Forest: felling, burning and regeneration. In: Kyuma K. and Pairitra C. eds.. Shifting cultivation, Tokyo, pp.13-26.
- UNFCCC (2015). Paris Climate Change Conference-November 2015, COP 21. Conference of the Parties (COP). Adopt Paris Agreement Propos by Pres 2015, 21932:32.

- Vilkov, A. and Tian, G. (2023). Blockchain's Scope and Purpose in Carbon Markets: A Systematic Literature Review. Sustainability, 15:1-27.
- Zhao, D., Cai, J., Xu, Y., Liu, Y. and Yao, M. (2023). Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review. Urban Forestry & Urban Greening, 86:128037.

(Received: 30 September 2023, Revised: 1 January 2024, Accepted: 8 January 2024)